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ABSTRACT 

This  paper  describes the Automated  Scheduling  and 
Planning  Environment  (ASPEN).  ASPEN  encodes 
complex  spacecraft  knowledge of operability constraints, 
flight rules, spacecraft  hardware,  science  experiments  and 
operations  procedures to allow for automated  generation 
of  low level spacecraft  sequences.  Using  a  technique 
called iterative repair, ASPEN classifies constraint 
violations (i.e., conflicts) and  attempts to repair each by 
performing  a  planning  or  scheduling operation. I t  must 
reason  about  which conflict to resolve first and  what 
repair method to try for the given conflict. ASPEN is 
currently being utilized in the development of automated 
plannerlscheduler  systems for several spacecraft, 
including the UFO-1  naval  communications satellite and 
the Citizen  Explorer  (CX1) satellite, as well as for 
planetary  rover  operations  and  antenna  ground  systems 
automation.  This  paper  focuses  on the algorithm  and 
search strategies employed by ASPEN to resolve 
spacecraft  operations constraints, as well as the data 
structures for representing these constraints. 

1. INTRODUCTION 

Planning  and  scheduling  technology offers considerable 
promise  in  automating  spacecraft operations. Planning 
and  scheduling  spacecraft  operations  involves  generating 
a  sequence  of  low-level  spacecraft  commands  from  a set 
of  high-level  science  and  engineering goals. We discuss 
ASPEN  and its use of an iterative repair algorithm for 
planning  and  scheduling as well as for replanning  and 
rescheduling. 

ASPEN is a  reconfigurable  planning  and  scheduling 
software  framework  [Fukunaga, et  al.,  19971. Spacecraft 
knowledge is encoded in ASPEN  under  seven  core 
classes: activities, parameters,  parameter  dependencies, 
temporal constraints, reservations, resources  and state 
variables. An activity is an  occurrence  over  a  time 
interval that in  some way affects the spacecraft. It can 
represent  anything  from  a  high-level  goal  or  request to a 
low-level  event  or  command. Activities are the central 

structures in ASPEN, and also the most  complicated. A 
more detailed definition is given in a later section. 
Together, these constructs can be used to define 
spacecraft components,  procedures, rules and constraints 
in order to allow  manual  or  automatic  generation  of valid 
sequences  of activities, also calledplans or  schedules. 

Once the types of activities are defined, specific instances 
can  be created from  the types. Multiple activity instances 
created from the same type  might  have  diff'etent 
parameter values, Including the start tlnlc Man! c ~ a m ~ l a  

Imaging activitles, tal- example. can be cwatccl l i o l t l  t l w  
same type  but wlth dlfferent Image targets and at dlftetent 
start times. The  sequence of activity instances is what 
defines the plan  or  schedule. 

The job of a  plannerkheduler, whether  manual or 
automated, is to accept  high-level  goals  and  generate  a set 
of low-level activities that satisfy the goals  and do not 
violate any of the spacecraft flight rules or constraints. 
ASPEN provides  a  Graphical  User Interface (GUI) for 
manual  generation andor manipulation of activity 
sequences.  However, the automated  planner/scheduler 
will  be the focus of  the remainder  of this paper. 

In ASPEN, the main  algorithm for automated  planning 
and  scheduling is based  on  a  technique called iterative 
repair [Zweben, et al., 19941. In iterative repair, the 
conflicts in the plan are detected  and  addressed  one at a 
time until no conflicts exist, or  a  user-defined  time limit 
has  been  exceeded.  A conflict is a violation of  a 
reservation, parameter  dependency  or  temporal constraint. 
Conflicts can be repaired by means  of several predefined 
methods.  The repair methods are: moving an actlvlty. 
adding a new instance of an  acllvity. deletlng a11 actlvlty.  
detailing an activity, abstractmg an actlvlty, maklng a 
reservation of an activity, canceling a reservation, 
connecting  a  temporal constraint, disconnecting  a 
constraint, and  changing a parameter value. The repair 
algorithm  may  use any of these methods in an  attempt to 
resolve  a conflict. How the algorithm  works is largely 
dependent  on the type  of conflict being resolved. 

mailto:firstname.lastname}@jpl.nasa.gov


2. MODEL COMPONENTS AND CONSTRAINTS 

Spacecraft  models  are  developed in the ASPEN Modeling 
Language  (AML) [Smith, et al., 1998; Sherwood, et al., 
19981. These  models are parsed into data structures that 
provide  efficient  reasoning capabilities for planning and 
scheduling.  There are seven basic  components to an 
ASPEN  model: activities, parameters,  parameter 
dependencles, temporal constraints, resources, state 
variables, and reservations. Together,  they  describe  what 
the spacecraft  can  and cannot do during operations. 

A parameter is simply a variable with a restricted 
domain.  One  parameter,  for  example,  can  be the range of 
integers between  ten  and twenty. Other parameter  types 
include floating point numbers,  booleans and strings. A 
parameter  dependency is a functional relationship 
between  two  parameters.  An activity end time, for 
example. is a function  (the  sum) of the start time  and the 
duratlon. A more  complicated  dependency  might  compute 
the duratlon of' a spacecraft slew  from the initial and final 
orientation. 

In  the  model,  relative  ordering constraints can  be 
specified  for  groups  of activities. A temporal  constraint is 
a  relationship  between  the start or  end time of  one activity 
with the start  or  end time of  another activity (see Figure 
1). One  might  specify, for example, that an instrument 
warming  activity  must  end  before the start of an activity 
that uses the instrument.  Minimum and maximum 
separation  distances  can be specified  in a temporal 
constraint. The  warming activity for example, might be 
requlred to end at least  one  second  but at most five 
mlnutes  before  using the instrument.  Temporal 
constraints  can  be  combined with conjunctive  or 
disjunctive operators to form more  complicated 
expressions. 

Recharge Warm U p  Turn On 

Energy ;- 
Power 

Device OFF ON WARM 

Figure 2: Timelines for activities, a depletable  resource 
(energy), a non-depletable  resource (power),  and  a  state 
variable (device). 

A resource represents the profile of a physical  resource  or 
system variable over  time (see Figure 2), as well  as  the 
upper and lower bounds of the profile. In ASPEN, a 
resource can either be depletable or non-depletable. A 
depletable  resource  is  used by  a  reservation  and  remains 
used even after the end of the activity making the 
reservation. Examples of  depletable resources on 
spacecraft  include memory,  fuel  and  energy. A non- 
depletable  resource  is  used only  for the duration of the 
activity making the reservation. Power is an  example of a 
non-depletable resource. A resources can  be  assigned a 
capacity, restricting its value  at any given time. A state 
variable represents the value  of  a  discrete  system variable 
over time. The  set  of possible states and the set  of 
allowable transitions between states are  both defined with 
the state variable. An  example  of  a state variable is an 
instrument switch that may  be  either  ON, WARMING, or 
OFF.  This state variable may be restricted to transitions 
from  OFF to WARMING and  not directly to  ON. 
Reservations are requirements  of  activities  on resources 
or state variables. For  example, an activity can  have a 
reservation for ten watts  of power.  Some  reservations  are 
modeled as instantaneous effects (e.g., reservations that 
change the state on a state variable). The  user  can  specify 
whether this effect occurs  at the start  or  end  of the 
activity. 

Activity  hierarchies can be  specified  in the model using 
decompositions (see Figure 3). A decomposition is a set 
of sub-activities along  with temporal  constraints  between 
them.  In this way, one  can define a  high-level activity that 
decomposes into a  set of  lower-level activities that may 
be  required to occur in  some relative order. These 
activities in  turn  may  have their own  decompositions.  In 
addition,  an activity may  have  multiple  decompositions to 
choose from. Thus,  allowing an activity to  be  expanded in 
different ways. 
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Figure 3:  An activity hierarchy. 

An activity has  a set of parameters,  parameter 
dependencies,  temporal constraints, reservations and 
decompositions.  All activities have at least three 
parameters:  a start time, an  end  time  and  a duration. There 
is also at least one  parameter  dependency, relating these 
three parameters.  In addition, all activities have at least 
one  temporal constraint that prevents the activity from 
occurring outside of the planning  horizon.  Any additional 
components are optional. 

3. CONFLICTS 

A  complete  plan  may  not  always  be consistent with the 
constraints in the model.  A conflict is a violation of one 
of the model constraints. There are nine basic  types of 
conflicts in ASPEN: 

0 Abstract activity conflicts 
Parameter  dependency conflicts 
Unassigned  temporal constraint conflicts 
Violated  temporal constraint conflicts 
Unassigned  reservation conflicts 
Depletable  resource conflicts 
Non-depletable  resource conflicts 
State usage conflicts 
State transition conflicts. 

Each conflict provides  information  about  what objects are 
involved  and  how to repair the conflict. 

An abstract  activity  conflict is simply  an activity that has 
not  yet  been  decomposed into its sub-activities. All 
activities must  be  expanded to their most detailed level. If 
an activity has  more  than  one  decomposition, the 
planning  algorithm  must  decide  which  decomposition to 
use  when detailing the activity. Detailing an activity 
involves creating instances of  the activities specified III 

the decomposition.  In addition, all temporal constralnts 
and  parameter  dependencies  must be connected  among 
the new sub-activities and the parent activity. 

A parameter  dependency conflict is a violation of a 
functional relationship between  two  parameters.  In  other 
words, the value of  a parameter is not  equal to  the result 

of a  function that constrains that parameter value. For 
example,  a  parameter p may be required to  be  the square 
of another  parameter q. If q is assigned to 5 and p is 
assigned any value  other  than 25, this will be a parameter 
dependency conflict. This conflict can  be  resolved  by 
assigning  a different value to either p or q. 

An unassigned  temporal  constraint  conflict occurs  when  a 
temporal constraint exists for an activity, but an activity 
instance has  not  been  selected to satisfy the constra~nt 
(see Figure 4). A  temporal constraint 1s defined i n  one 
activity type A and specifies the requirement for another 
activity B within  some  temporal relationship. When an 
instance of A is created, the temporal constraint is created 
and is not initially assigned  an  instance  of B. The conflict 
computes all activity instances that can repair this conflict 
(basically, all instances of  type B). 

A :  a1 

H H H  
Figure 4: An unassigned  temporal constraint conflict 
requiring  an activity of type B. Any of bl ,  b2 or b3 
can  be use, or  a  new instance of type B can be added. 

A violated  temporal  constraint conflict occurs  when  a 
temporal constraint has  been  assigned,  but the 
relationship (specified in the model)  does  not  hold for the 
two participating activities (see Figure 5). For  example, 
consider an activity Instance A that  must  end before the 
start of activity Instance B by at least I O  seconds but at 
most 1 minute. If A ends at time t ,  then there is a conflict 
if B does  not start between  time t+10 and t+60. The 
conflict keeps track of the contributing activities, which 
in this example  includes activities A and B. In addition, 
the conflict computes the start time intervals for  moving 
an activity that would repair the conflict. Continuing  with 
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Figure 5: A  violated  temporal 
constraint conflict. 
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t l w  cxample, the repalr Interval for F' would  be  from t + l O  
to t+60. Activity A could also be  moved to a different 
repair interval. 

An unassigned  reservation  conflict is a reservation in an 
activity that  has  not  been  assigned  to  a resource  or state 
variable of  the  required type. Resource  and state variable 
types are defined  in  the model, and the plan can  have 
multiple instances  of the same  type (e.g., multiple  power 
sources).  The  plan keeps a timeline for each  instance 
representing the value of the resource  or state variable 
value.  A n  unasslpned  reservatlon conflict is repaired  by 
select~ng a resout-ce 0 1 -  state varlable Instance  and  making 
the reservation (Le., propagating the effects of the 
reservation  on the timeline). 

The  most  complicated types of conflicts are violated 
timeline  conflicts. A conflict can  occur  on  a depletable 
resource,  a non-depletable resource, or a state variable. 
For state variables, there are two types  of conflicts: state 
usage and state transition conflicts. 

When a resource  value a t  a particular time  exceeds  the 
m1n1111u111 o r  maximum hounds of the resource. a confllct 
1 5  gcncrated. Thc contrlbut~ng a c t ~ v ~ t ~ e s  are the activltles 
wlth reservations that use  the  resource  during the time  of 
the conflict  (see  Figures 6 and 7). For non-depletables, 
these are the reservations that overlap,  exceeding the 
resource  bounds.  For depletables, these are all 
reservations  on  the  timeline  that  occur  at  or before the 
conflict. If the value is above the resource maximum  (i.e., 
overuse), then contributors are only those activities with 
reservations  that  reserve a positive value. Those with 
negative  values are contributors when the resource  value 
IS belou the minimum (i.e.. u/7rleruse). The conflict also 
knous which actlvlty types  would repair the conflict i f  a 
n ~ u  Instance were created. This  Includes activity types 
wlth negatwe usage for overuse conflicts and  types  with 

contributors 
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Figure 6: Time  intervals that resolve a depletable 
resource  conflict  by  a)  moving  a  positive contributor or 
b) adding  a  negative  contributor. 

positive usage for underuse conflicts. The  conflict also 
computes the start times indicating where to move  or  add 
activities in order to  repair  the  conflict  (see  Figures 6 and 
7). For  moving existing activities, repair  start  times  are  all 
times except during the conflict. For  adding  new 
activities, repair start times are just the opposite-times 
during  the conflict. 
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Figure 7: Time intervals that resolve a non-depletable 
resource conflict by a) moving a  positive contributor or 
b) adding a negative contributor. 

A state variable can  have a  conflict  in two ways:  when  a 
reservation requires a state that is  not available for the 
duration  of the reservation (i.e.,  state  usage conflict), or 
when a reservation  makes a transition that is not allowed 
by the state variable (Le., state transition conflict). The 
contributors  of a state usage  conflict  include the activity 
that changes the state (called  a changer) and  all activities 
that use a state (called users) that are  different  from the 
state during the time of the conflict  (see Figure 8). In 
order to fix this conflict, the users  might  be  moved 
anywhere but  over the state in conflict. Otherwise, if  we 
decide to move the changer, it must  be  moved  to  a time 
later than the state in conflict or earlier  than the previous 
state so that this changer no  longer affects the state 
required  by the conflicting users. For state transition 
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Figure 8: Time intervals that resolve a state variable 
usage conflict by a) moving UseOnl  b) moving 
Turnoff2  or  c) adding TurnOn;  and time intervals that 
resolve a state variable transition conflict by d)  moving 
TurnOnl e) moving Turnoff1  or f )  adding Warm. 



conflicts, the contributor is only the activity that changes 
the state (i.e., makes the illegal transition). Again, the 
changer  must be moved to a  time later than the state in 
conflict or earlier than the previous state. As  with 
resource conflicts, new activities can be created to repair 
state variable conflicts. For  a state usage conflict, we can 
add activities that can  change to the desired state. These 
activities must  be  added at a  time  before the conflicting 
user, but after the conflicting changer.  For state transition 
conflicts, we can  add activities that can  change to a state 
that makes  a legal transition. These activities must  be 
added  between the two conflicting changers. 

4. ITERATIVE  REPAIR  SEARCH 

ASPEN  organizes its search  around several types  of 
constraints that must  hold  over valid plans. ASPEN  then 
has  organized  around  each constraint type, a classification 
of the ways  in  which the constraint may  be violated. 
These violations are called conflicts. Organized  around 
each conflict type, there is a set of repair methods. The 
search  space consists of all possible repair methods 
applied to all possible conflicts in all possible orders. We 
describe  one tractable approach to searching this space. 

The iterative repair algorithm  searches the space  of 
possible  schedules in ASPEN by making  decisions at 
certain choice points, and  modifying the schedule based 
on these decisions. The  choice points are: 

Selecting  a conflict 
Selecting  a repair method 
Selecting an activity for the chosen repair method 
Selecting  a start time for the chosen activity 
Selecting  a  duration for the chosen activity 

0 Selecting  timelines for reservations 
0 Selecting  a  decomposition for detailing 

Selecting  parameters to change 
Selecting  values  for  parameters 

Given  a  schedule  with  a set of conflicts of all types, the 
first step in the iterative repair algorithm is to select one 
of the conflicts to be attacked. Next,  a  method is selected 
for repairing the conflict. All  possible repair methods are: 

Moving an existing activity to a new location 
Creating  a  new activity and insert at a location 
Deleting  an existing activity 
Connecting  a  temporal constraint between two 

Disconnecting  a  temporal constraint between two 

Detailing  an activity 
Abstracting an activity 
Making reservations of an activity 
Canceling reservations of  an activity 
Grounding  a  parameter  in  an activity 

activities 

activities 

Applying  a  dependency  function  between two 

As described in the previous section, the type  of conflict 
will detemline the set of possible repair methods  for  any 
given conflict. If it was  decided to try to move  or delete 
an activity, the algorithm  must  decide  which activity to 
move or delete. The  type  of conflict and the location of 
the conflict will determine the set of  possible activities 
that, if moved or deleted. may resolve the contllct. I n  
addition. a new start tme and d u r a t ~ o n  musl ht. as5Ignt.d 
to  the actlvity. If  It was declded to try to ddd a neb 
activity, the activity type must  be chosen  from the  hst of 
possible  types  determined by the conflict. For abstract 
activity conflicts, the repair algorithm will most likely 
choose to detail the activity. If it has  multiple 
decompositions,  one  of  them  must  be  chosen.  Deciding to 
abstract an activity requires choosing  which activity to 
abstract. When  making  a  reservation  in an attempt to 
resolve a conflict, a  resource  or state variable must be 
chosen for the set  of possible  resources  or state variables. 
Also, if the reservatlon has an unspecified value.  one 
must  be  chosen for I t .  Canceling r e s e ~ n a t ~ o n s  o n l )  
requires choosing whlch reservatwn to cancel. I I  the 
repair algorithm has decided to connect a temporal 
constraint, the specific activity for the constraint must  be 
selected. When disconnecting,  only the constraint to be 
disconnected must  be chosen. Finally, changing a 
parameter  value requires choosing  a  new  value  for the 
parameter.  After all decisions are made  and the repair 
method is performed, the effects are propagated  and the 
new conflicts are computed.  This  process repeats until no 
conflicts exist or a  time limit has been  exceeded. 

parameters 

5 .  SEARCH HEURISTICS 

All throughout the iterative repair algorithm, many 
decisions  must be made.  In  other  words, there are many 
ways in which a conflict may  be resolved. Some ways 
ultimately  work better than others do.  For  example, 
deleting an activity may  resolve  a  resource conflict 
caused  by that activity. However, that activity may  have 
been  required  by  other activities. Or, if the activity was  a 
high-level goal, the user  might  prefer to have as many 
goals satisfied as possible. Another typical example 
involves  choosing a locatlon to move an  actlvity. M a n y  
locations may  resolve  the conflict bcmg addressed, bur 
many locations may also create additlon  contllcts. In 
order to guide the search  toward  more fruitful decisions, 
the user  can  define  a set of search heuristics. 

In  ASPEN,  a heuristic is a  function that orders  and  prunes 
a list of  choices  for  a particular decision in the search. 
Heuristics can be defined at each  of the choice points in 
the algorithm. For  example,  one heuristic might sort the 



1151 ol~contl~cts. Indlcatrny whlch confllcts to address first. 
In addltlon, each heuristlc can  use the knowledge  of all 
previous decisions  made. For  example, the heuristic for 
deciding  which  method  to use to resolve the conflict can 
(and  should)  be  dependant on which conflict was  chosen. 
Each heuristic can  be assigned a confidence level that 
indicates how  often the heuristic should be  used.  When 
the heuristic is not  used, other heuristics can be specified, 
otherwise the  decision will be  made  randomly. 

ASPEN  currently  has some built-in domain-independent 
heurlstlcs that can be used for repamng conflicts. First, a 
hcurlstlc eslsts tor sortlng conflicts by their type. This 
heurlstlc prefers conflicts that require  new activities (Le., 
planning type conflicts)  and then  considers conflicts on 
timelines  (Le., scheduling type conflicts). This heuristic 
seems  to  work  well  and  therefor has a  high level of 
confidence  for  most  of  our  models. 

There is also a heuristic for selecting the repair method 
for a  given  conflict  type.  This heuristic prefers moving 
activities for  repairing  most types of conflicts. If  move is 
not selected, the next  preferred  method  is  adding  new 
a c t ~ v ~ t r e s .  Fmally. a small  percentage  of  the time, it will 
choose to delete an actlvlty. Obviously, these methods are 
only  chosen for those conflicts for which  they  make  sense 
( e g ,  timeline conflicts).  Some conflicts have  only  two 
possible  repair  methods,  one  of which  is to delete, 
therefor  making  the  decision  much easier (e.g., undetailed 
activity conflicts  can  only  be resolved  by detailing or 
deleting the activity). 

Another  significant heuristic available  in ASPEN is a 
heuristic for selecting start time intervals for activities 
helng moved  or created. This heuristic first tries selecting 
start [lme Intervals that not only  resolve  the  current 
confllc[ but also do not cleat? any new conflicts’. If there 
are no  such start tlmes, the heuristic may try selecting 
times that create only  a few conflicts. If this list is also 
empty, then  it may select start times that simply  resolve 
the current  conflict.  Sometimes, however,  it may decide 
to return an  empty list, indicating that this particular 
activity should  not be moved  or added. 

A few other heuristics are currently  being  used in some of 
the domains modeled  in  ASPEN. All of  them, however, 
at-e relatively slmple  and  work  well for the wide  range of 
A S P E N  models. 

I In  general, ASPEN  provides functions for querying the 
current  plan  about  operations that can be performed or 
values that  can  be  assigned without  creating new 
violations. These  algorithms  are interesting in their own 
right, and  will  be  discussed  in  future work. 

6.  CONCLUSIONS AND FUTURE WORK 

Planning and scheduling technology  offers considerable 
promise in automating spacecraft operations.  Planning 
and  scheduling  spacecraft operations  involves  generating 
a sequence of low-level spacecraft  commands  from  a set 
of high-level  science and  engineering  goals. We have 
extended and implemented a  technique  called iterative 
repair for automatically resolving conflicts in a 
pladschedule. In addition, we have isolated a  set  of 
conflict types that identify plan violations as  well  as 
suggest  ways  in  which to repair the violation. 

Current and future work  includes integrating repair 
planning  with  execution  [Chien, et al., 19991. Here, the 
idea  is to continuously replan  around  updated  information 
coming from execution  monitoring. As  an  embedded 
system, ASPEN would enable  fast  response  to  unforeseen 
events (e.g., faults or  science  opportunities)  with little or 
no  human interaction. In addition, we  are  also working on 
a framework for plan  optimization. In  this case, the 
objective is to find  plans with high  quality in addition to 
being conflict-free. We take an  approach that parallels 
iterative repair called iterative optimization. Here, we 
classify a set of  user preferences  for certain plan 
characteristics. These  preferences are used  to calculate a 
score for the plan. The iterative optimization  algorithm 
makes plan modifications suggested  by  the  preferences  in 
order to increase the overall score. 
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